Internet of Things Specialization

Build Your Own Internet of Things

Earn a Certificate

  • Specialization via Coursera and University of California, San Diego
  • $394 for 6 months
  • 4 courses + capstone project
1 Review
Rating based on 1 student review.

Learn More

Internet of Things
★★★★★ (1 Review)
Learn the creation of internet of things products and services in six courses.
Credential Type
6 months

This Specialization covers the development of Internet of Things (IoT) products and services—including devices for sensing, actuation, processing, and communication—to help you develop skills and experiences you can employ in designing novel systems. The Specialization has theory and lab sections. In the lab sections you will learn hands-on IoT concepts such as sensing, actuation and communication. In the final Capstone Project, developed in partnership with Qualcomm, you’ll apply the skills you learned on a project of your choice using the DragonBoard 410c platform.

Incentives & Benefits

In this Specialization, you’ll gain hands-on experience designing and building novel systems with the DragonBoard 410c platform. The Capstone Project, developed in partnership with wireless technology and innovation company Qualcomm, provides a unique opportunity to apply your skills to realistic industry challenges.

What You'll Learn

  • Explain the history and scientific innovations of technologies that have converged to enable the Internet of Things
  • Build a working prototype using Internet of Things technologies

Recommended Background

    ★★☆☆☆ (6) 2 weeks 20th Mar, 2017
    It is hard to imagine life without your Smartphone – you have come to rely on it so much – for your work; to stay in touch with family and friends; to capture and share those special moments; to find your way around in a new neighborhood. Did you ever wonder how and when all this happened? Or how and when GPS sensors came to be in your cell phone? In this course, we will explore the convergence of multiple disciplines leading to todays’ Smartphones. You will learn about the birth and evolution of Telephony Networks, Broadcast Networks (TV and Radio) and Consumer Electronics. We will discuss the impact of Internet, (multimedia) content, smartphones and apps on everyday lives. We will then look at how this emerging platform called the Internet of Things – wherein billions and trillions of devices communicating with each other and “the cloud” – could enable unprecedented, innovative products and services. Take this course if you want to understand what great new advances in mobile-enabled products will be coming our way! Learning Goals: This course provides a core grounding in how science and technology have developed to enable the Internet of Things – in a way appropriate for any learner. For those interested in developing further hands-on expertise in designing and developing for the Internet of Things, this course will provide a context to the discoveries and converging technologies that will springboard the next round of innovations. After completing this course, you will be able to: 1. Compare how the telephone system works (that is, peer-to-peer networks) with how media delivery works (that is, broadcast/multicast networks). 2. Explain the tradeoffs between circuit switched networks (that is, dedicated resources) and packet switched networks (that is, shared resources). 3. Tell interesting stories about key innovations that transformed the communications, entertainment and consumer electronics industries. 4. Explain how email, YouTube, SMS, etc. work. 5. Find resources for those wishing to do more of a “deep-dive” into the above topics.
    ★★★☆☆ (3) 10 weeks 20th Mar, 2017
    Do you want to develop skills to prototype mobile-enabled products using state-of-the-art technologies? In this course you will build a hardware and software development environment to guide your journey through the Internet of Things specialization courses. We will use the DragonBoard™ 410c single board computer (SBC). This is the first in a series of courses where you will learn both the theory and get the hands-on development practice needed to prototype Internet of Things products. This course is suitable for a broad range of learners. This course is for you if: • You want to develop hands-on experience with mobile technologies and the Internet • You want to pivot your career towards the design and development of Internet of Things enabled products • You are an entrepreneur, innovator or member of a DIY community Learning Goals: After completing this course, you will be able to: 1. Configure at least one integrated development environment (IDE) for developing software. 2. Make use of git, adb and fastboot to flash multiple OS and repair bricked boards. 3. Install Android 5.1 (Lollipop) and Linux based on Ubuntu. 4. Create, compile and run a Hello World program. 5. Describe the DragonBoard™ 410c peripherals, I/O expansion capabilities, Compute (CPU and Graphics) capabilities, and Connectivity capabilities.
    ☆☆☆☆☆ (0) 6 weeks 20th Mar, 2017
    Have you wondered how information from physical devices in the real world gets communicated to Smartphone processors? Do you want to make informed design decisions about sampling frequencies and bit-width requirements for various kinds of sensors? Do you want to gain expertise to affect the real world with actuators such as stepper motors, LEDs and generate notifications? In this course, you will learn to interface common sensors and actuators to the DragonBoard™ 410c hardware. You will then develop software to acquire sensory data, process the data and actuate stepper motors, LEDs, etc. for use in mobile-enabled products. Along the way, you’ll learn to apply both analog-to-digital and digital-to-analog conversion concepts. Learning Goals: After completing this course, you will be able to: 1. Estimate sampling frequency and bit-width required for different sensors. 2. Program GPIOs (general purpose input/output pins) to enable communication between the DragonBoard 410c and common sensors. 3. Write data acquisition code for sensors such as passive and active infrared (IR) sensors, microphones, cameras, GPS, accelerometers, ultrasonic sensors, etc. 4. Write applications that process sensor data and take specific actions, such as stepper motors, LED matrices for digital signage and gaming, etc.
    ★★★☆☆ (2) 4 weeks 6th Mar, 2017
    Have you wondered how “Things” talk to each other and the cloud? Do you understand the alternatives for conveying latency-sensitive real time data versus reliable signaling data? Building on the skills from the Sensing and Actuation course, we will explore protocols to exchange information between processors. In this course, you will learn how VoIP systems like Skype work and implement your own app for voice calls and text messages. You will start by using the Session Initiation Protocol (SIP) for session management. Next, you will learn how voice codecs such as Adaptive Multi Rate (AMR) are used in 3G networks and use them for voice traffic in your app. Learning Goals: After completing this course, you will be able to: 1. Implement session initiation, management and termination on your DragonBoard™ 410c using SIP. 2. Discover other users and exchange device capabilities. 3. Compare and contrast narrowband and wideband codecs and experience the voice quality differences between them. 4. Implement and demonstrate VoIP calls using the DragonBoard 410c.
    ☆☆☆☆☆ (0) 3 weeks 13th Mar, 2017
    Content is an eminent example of the features that contributed to the success of wireless Internet. Mobile platforms such as the Snapdragon™ processor have special hardware and software capabilities to make acquisition, processing and rendering of multimedia content efficient and cost-effective. In this course, you will learn the principles of video and audio codecs used for media content in iTunes, Google Play, YouTube, Netflix, etc. You will learn the file formats and codec settings for optimizing quality and media bandwidth and apply them in developing a basic media player application. Learning Goals: After completing this course, you will be able to: 1. Explain the tradeoffs between media quality and bandwidth for content delivery. 2. Extract and display metadata from media files. 3. Implement and demonstrate a simple media player application using DragonBoard™ 410c.

    1 Review.

    Vipul Sharma
    Field of study
    Masters Degree
    Partially Completed this credential.

    esoteric made trivial

    1 rating
    1 review

    Internet of Things

    Receive email notifications about this credential.
    Follow Internet of Things