To support our site, Class Central may be compensated by some course providers.

医学图像处理技术 Medical Image Analysis

Shanghai Jiao Tong University via Coursera

students interested
  • Provider Coursera
  • Subject Health Care
  • $ Cost Free Online Course (Audit)
  • Session Finished
  • Language Chinese
  • Certificate Certificate Available
  • Effort 6-8 hours a week
  • Start Date
  • Duration 6 weeks long

Taken this course? Share your experience with other students. Write review

Overview

Sign up to Coursera courses for free Learn how

随着信息技术及医学影像成像技术的发展,医学图像处理在医学临床、教学和科研中发挥着越来越重要的作用,有力地推动着医学科学研究和临床医疗的进步。如何有效地应用图像增强、分割、配准、融合以及三维重建等数字图像分析与处理技术,对人体解剖结构和病变区域进行定位、提取、三维再现并量化分析是使得医学影像数据应用价值最大化的前提和保证。本课程针对医学图像的特征,结合临床需求,由浅入深地讲解医学图像的种类、特征、应用领域、数字化存储形式,并分类讲解图像处理的理论和算法,结合应用案例和课程实践使学生熟练掌握祥光领域的知识和技能,并具备一定的动手能力,为进一步学习医学图像领域的其他课程奠定基础。
The medical image analysis plays an important role in clinical application. The people who want to learn advance theory, algorithms and its applications on the digital image processing area is most suitable. The contents may include image acquiring, image filtering, image segmentation, image understanding and visualization. It could help students to review the history, current status and development of the research area, and could help them to apply them to their own research field. The students are required to understand the basic theory, algorithms and its applications on the digital image processing area.

Syllabus

第一周 绪论

第二周 医学图像基础算法(上)

第三周 医学图像基础算法(下)

第四章 二值数学形态学

第五章 灰度数学形态学

第六周 彩色图像和三维图像 

第七周 图像分割与形状轮廓模型

第八周 医学图像配准

Taught by

顾 力栩

Help Center

Most commonly asked questions about Coursera Coursera

Reviews for Coursera's 医学图像处理技术 Medical Image Analysis
Based on 0 reviews

  • 5 star 0%
  • 4 star 0%
  • 3 star 0%
  • 2 star 0%
  • 1 star 0%

Did you take this course? Share your experience with other students.

Write a review

Class Central

Get personalized course recommendations, track subjects and courses with reminders, and more.

Sign up for free

Never stop learning Never Stop Learning!

Get personalized course recommendations, track subjects and courses with reminders, and more.