To support our site, Class Central may be compensated by some course providers.

  • Provider Coursera
  • Subject Machine Learning
  • $ Cost Free Online Course (Audit)
  • Session In progress
  • Language English
  • Certificate Paid Certificate Available
  • Start Date
  • Duration 6 weeks long

Taken this course? Share your experience with other students. Write review

Overview

Sign up to Coursera courses for free Learn how

Case Study - Predicting Housing Prices

In our first case study, predicting house prices, you will create models that predict a continuous value (price) from input features (square footage, number of bedrooms and bathrooms,...). This is just one of the many places where regression can be applied. Other applications range from predicting health outcomes in medicine, stock prices in finance, and power usage in high-performance computing, to analyzing which regulators are important for gene expression.

In this course, you will explore regularized linear regression models for the task of prediction and feature selection. You will be able to handle very large sets of features and select between models of various complexity. You will also analyze the impact of aspects of your data -- such as outliers -- on your selected models and predictions. To fit these models, you will implement optimization algorithms that scale to large datasets.

Learning Outcomes: By the end of this course, you will be able to:
-Describe the input and output of a regression model.
-Compare and contrast bias and variance when modeling data.
-Estimate model parameters using optimization algorithms.
-Tune parameters with cross validation.
-Analyze the performance of the model.
-Describe the notion of sparsity and how LASSO leads to sparse solutions.
-Deploy methods to select between models.
-Exploit the model to form predictions.
-Build a regression model to predict prices using a housing dataset.
-Implement these techniques in Python.

Taught by

Carlos Guestrin and Emily Fox

Help Center

Most commonly asked questions about Coursera Coursera

Reviews for Coursera's Machine Learning: Regression
4.6 Based on 19 reviews

  • 5 stars 74%
  • 4 stars 16%
  • 3 star 5%
  • 2 star 5%
  • 1 star 0%

Did you take this course? Share your experience with other students.

Write a review
  • 1
Gregory S
5.0 3 years ago
by Gregory completed this course and found the course difficulty to be medium.
Machine Learning: Regression is the second course in the 6-part Machine Learning specialization offered by the University of Washington on Coursera. The 6-week course builds from simple linear regression with one input feature in the first week to ridge regression, the lasso and kernel regression. Week 3 also takes a detour to discuss important machine learning topics like the bias/variance trade-off, overfitting and validation to motivate ridge and lasso regression. Like the first course in the specialization, "Regression" uses GraphLab Create, a Python package that will only run on the 64-bi…
10 people found
this review helpful
Was this review helpful to you? Yes
Norman B
5.0 3 years ago
by Norman completed this course, spending 9 hours a week on it and found the course difficulty to be hard.
This course delves into regression in a big way. You start off fairly simple, a simple linear model on some housing data (this should be pretty familiar if you took the case study class that is prerequisite to this one), and delves into the concepts at a good pace. You will be surprised by how much you can learn just by following along in the ipython notebooks' assignments. The lectures are laid out in a logical order of progression, and go at a pace that is slow enough to fully grasp the concepts. I recommend this course to anybody that wishes to learn about regression from a ML standpoint.<…
4 people found
this review helpful
Was this review helpful to you? Yes
Saransh A
5.0 2 years ago
by Saransh completed this course.
This is perhaps one of the best course which I could have taken on regression, each and every aspect was thoroughly discussed, the assignments were good, in fact the programming assignments were built with the learning part kept in mind, and not to trap the students in programming part of it

The course is heavy in comparison to other MOOCs.

God, this would have been perfect had it been in Scikit-Learn, but then again it might have been asking too much of it

Also, I suggest the people who complete the course to go to Kaggle and try to attempt a couple of questions of this technique after the completion of this course. It would definitely help you cement your understanding

All in all this course was a total 5/5

Definitely continuing with the specialization
Was this review helpful to you? Yes
Jason C
5.0 3 years ago
by Jason completed this course, spending 8 hours a week on it and found the course difficulty to be very hard.
This is one of the most informative and useful online classes I've taken to date. The material covered is detailed and applicable broadly. It is also exceptionally hard! The assignments are very challenging and extremely precise.

I struggled frequently and it ended up taking a significant amount of time, but it was extremely well worth it in the end. I'm very excited for the next class in the specialization!
3 people found
this review helpful
Was this review helpful to you? Yes
Steve S
4.0 2 years ago
by Steve completed this course, spending 10 hours a week on it and found the course difficulty to be hard.
Just finished the class. It's not easy and I definitely learned a lot. My only complaints might be that if you're taking this through Coursera, you're pretty much on your own if you get stuck on something. There aren't many students taking it, and there don't seem to be any mentors to answer questions. It's also one of those theoretical classes where you don't really know how to apply the concepts after you finish.
Was this review helpful to you? Yes
Daniel R
5.0 3 years ago
by Daniel completed this course, spending 6 hours a week on it and found the course difficulty to be hard.
It is just excellent!

At the end of the course you should have your own toolbox to create regression models without needing any license or support.

It is hard though, but its worth it!
4 people found
this review helpful
Was this review helpful to you? Yes
Y. N
2.0 2 years ago
by Y. completed this course, spending 10 hours a week on it and found the course difficulty to be medium.
The course is "chapter 2"of the Machine Learning certification from this university. The start of this course was interesting. Videos are great and iPython assignements may prove difficult. But all in all I found this course much less interesting than the "Foundatins course (chapter 1 of the specialization. It looses its objectives very fast and basically what you will learn is to code "gradient descent" algorithms on and on....after listening to hours of videos that will have no use in your daily activities. Quite disappointed, especially now that I know that the GraphLab librairy used for the course is not a free package and the home company was acquired by Apple.... I intented to do the whole Machine Learning specialization of Uni of Washington on Coursera but actually..I won't.
Was this review helpful to you? Yes
Dietcoke D
5.0 3 months ago
Dietcoke completed this course, spending 3 hours a week on it and found the course difficulty to be medium.
The professors introduce many advanced topics in a smooth way that you can understand easily. It covers more details than most other ML MOOCs since it spends a whole class talking about regression, while other courses may spend only 1 or 2. I suggest people with some basic backgrounds in stats/regression taking this course, and you will learn more advenced topics such as ridge/lasso and how to implement it in Python. I plan to take the whole specialization and then go to more advance courses such as Neural Network offered by Toronto/Learning from data offered by CalTech.

Was this review helpful to you? Yes
Wichaiditsornpon@gmail.com W
5.0 2 years ago
by Wichaiditsornpon@gmail.com completed this course, spending 1 hours a week on it and found the course difficulty to be easy.
"Very fun" with professors are very informative and clearly explain, Course video is very great quality, Slideshow is full of color and picture that make the course not boring and also had commentary from instructors so you can read it without watching video and you will found it's also can understand with the instructors's commentary, I really want to give 10 star here.
Was this review helpful to you? Yes
Raphael F
4.0 2 years ago
Raphael completed this course.
Was this review helpful to you? Yes
Dhawal S
5.0 2 years ago
by Dhawal completed this course.
Was this review helpful to you? Yes
Abhilash V
5.0 2 years ago
by Abhilash completed this course.
Was this review helpful to you? Yes
Colin K
5.0 3 years ago
by Colin completed this course.
Was this review helpful to you? Yes
Fagner S
5.0 2 years ago
by Fagner completed this course.
Was this review helpful to you? Yes
Jinwook J
5.0 3 years ago
by Jinwook completed this course.
Was this review helpful to you? Yes
Gerhard G
5.0 3 years ago
Gerhard completed this course.
Was this review helpful to you? Yes
Vikram P
5.0 3 years ago
Vikram completed this course.
Was this review helpful to you? Yes
Alex I
3.0 2 years ago
Alex completed this course.
Was this review helpful to you? Yes
Zhen J
4.0 2 years ago
Zhen completed this course.
Was this review helpful to you? Yes
  • 1

Class Central

Get personalized course recommendations, track subjects and courses with reminders, and more.

Sign up for free

Never stop learning Never Stop Learning!

Get personalized course recommendations, track subjects and courses with reminders, and more.