To support our site, Class Central may be compensated by some course providers.

Introduction to Machine Learning for Coders!

fast.ai

students interested

Taken this course? Share your experience with other students. Write review

Overview

Welcome to Introduction to Machine Learning for Coders! taught by Jeremy Howard (Kaggle's #1 competitor 2 years running, and founder of Enlitic). Learn the most important machine learning models, including how to create them yourself from scratch, as well as key skills in data preparation, model validation, and building data products.
There are around 24 hours of lessons, and you should plan to spend around 8 hours a week for 12 weeks to complete the material. The course is based on lessons recorded at the University of San Francisco for the Masters of Science in Data Science program. We assume that you have at least one year of coding experience, and either remember what you learned in high school math, or are prepared to do some independent study to refresh your knowledge.

 

Syllabus

1—INTRODUCTION TO RANDOM FORESTS

2—RANDOM FOREST DEEP DIVE

3—PERFORMANCE, VALIDATION AND MODEL INTERPRETATION

4—FEATURE IMPORTANCE, TREE INTERPRETER

5—EXTRAPOLATION AND RF FROM SCRATCH

6—DATA PRODUCTS AND LIVE CODING

7—RF FROM SCRATCH AND GRADIENT DESCENT

8—GRADIENT DESCENT AND LOGISTIC REGRESSION

9—REGULARIZATION, LEARNING RATES AND NLP

10— MORE NLP AND COLUMNAR DATA

11—EMBEDDINGS

12— COMPLETE ROSSMANN, ETHICAL ISSUES

Reviews for Introduction to Machine Learning for Coders!
Based on 0 reviews

  • 5 star 0%
  • 4 star 0%
  • 3 star 0%
  • 2 star 0%
  • 1 star 0%

Did you take this course? Share your experience with other students.

Write a review

Class Central

Get personalized course recommendations, track subjects and courses with reminders, and more.

Sign up for free

Never stop learning Never Stop Learning!

Get personalized course recommendations, track subjects and courses with reminders, and more.