subject
Intro

edX: Principles of Machine Learning

 with  Dr. Steve Elston and Cynthia Rudin

This course is part of the Microsoft Professional Program Certificate in Data Science.

Machine learning uses computers to run predictive models that learn from existing data in order to forecast future behaviors, outcomes, and trends.

In this data science course, you will be given clear explanations of machine learning theory combined with practical scenarios and hands-on experience building, validating, and deploying machine learning models. You will learn how to build and derive insights from these models using R, Python, and Azure Machine Learning.

Syllabus

Explore classification
• Understand the operation of classifiers
• Use logistic regression as a classifier
• Understand the metrics used to evaluate classifiers
• Lab: Classification with logistic regression taught using Azure Machine Learning Regression in machine learning
• Understand the operation of regression models
• Use linear regression for prediction and forecasting
• Understand the metrics used to evaluate regression models
• Lab: Predicting bike demand with linear regression taught using Azure Machine Learning How to improve supervised models
• Process for feature selection
• Understand the problems of over-parameterization and the curse of dimensionality
• Use regularization on over-parameterized models
• Methods of dimensionality reduction Apply cross validation to estimating model performance
• Lab: Improving diabetes patient classification using Azure Machine Learning
• Lab: Improving bike demand forecasting using Azure Machine Learning Details on non-linear modeling
• Understand how and when to use common supervised machine learning models Applying ML models to diabetes patient classification
• Applying ML models to bike demand forecasting Clustering
• Understand the principles of unsupervised learning models
• Correctly apply and evaluate k-means clustering models
• Correctly apply and evaluate hieratical clustering model
• Lab: Cluster models with AML, R and Python Recommender systems
• Understand the operation of recommenders
• Understand how to evaluate recommenders
• Know how to use alternative to collaborative filtering for recommendations
Lab: Creating and evaluating recommendations
1 Student
review
Cost Free Online Course
Pace Upcoming
Institution Microsoft
Provider edX
Language English
Certificates $99 Certificate Available
Hours 3-4 hours a week
Calendar 13 weeks long

Disclosure: To support our site, Class Central may be compensated by some course providers.

+ Add to My Courses
FAQ View All
What are MOOCs?
MOOCs stand for Massive Open Online Courses. These are free online courses from universities around the world (eg. Stanford Harvard MIT) offered to anyone with an internet connection.
How do I register?
To register for a course, click on "Go to Class" button on the course page. This will take you to the providers website where you can register for the course.
How do these MOOCs or free online courses work?
MOOCs are designed for an online audience, teaching primarily through short (5-20 min.) pre recorded video lectures, that you watch on weekly schedule when convenient for you.  They also have student discussion forums, homework/assignments, and online quizzes or exams.

1 review for edX's Principles of Machine Learning

Write a review
a year ago
Silveira Homero completed this course.
Was this review helpful to you? YES | NO

Class Central

Get personalized course recommendations, track subjects and courses with reminders, and more.

Sign up for free