Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

Higher School of Economics

Introduction into General Theory of Relativity

Higher School of Economics via Coursera

This course may be unavailable.

Overview

Prepare for a new career with $100 off Coursera Plus
Gear up for jobs in high-demand fields: data analytics, digital marketing, and more.
General Theory of Relativity or the theory of relativistic gravitation is the one most famous branch of theoretical physics. Everybody heard about black holes, gravitational waves and expanding Universe. The goal of this online course is to introduce you into this theory and to give the precise meaning to these notions.

The introduction is based on the consideration of many practical generic examples in various scopes of the General Relativity.

Once you complete this HSE online course you will be able to solve basic standard problems of this theory.

We assume that you are familiar with the Special Theory of Relativity and Classical Electrodynamics. However, as an aid to the distant study we have recorded several complementary materials which are supposed to help you understand some of the aspects of the Special Theory of Relativity and Classical Electrodynamics and some of the calculational tools that are used in our course. Also as a complementary material we provide the written form of the lectures at the website: https://math.hse.ru/generalrelativity2015

Do you have technical problems? Write to us: [email protected]

Syllabus

  • General Covariance
    • To start with, we recall the basic notions of the Special Theory of Relativity. We explain that Minkwoskian coordinates in flat space-time correspond to inertial observers. Then we continue with transformations to non-inertial reference systems in flat space-time. We show that non-inertial observers correspond to curved coordinate systems in flat space-time. In particular, we describe in grate details Rindler coordinates that correspond to eternally homogeneously accelerating observers. This shows that our Nature allows many different types of metrics, not necessarily coincident with the Euclidian or Minkwoskain ones. We explain what means general covariance. We end up this module with the derivation of the geodesic equation for a general metric from the least action principle. In this equation we define the Christoffel symbols.
  • Covariant differential and Riemann tensor
    • We start with the definition of what is tensor in a general curved space-time. Then we define what is connection, parallel transport and covariant differential. We show that for Riemannian manifolds connection coincides with the Christoffel symbols and geodesic equations acquire a clear geometric meaning. We end up with the definition of the Riemann tensor and the description of its properties. We explain how Riemann tensor allows to distinguish flat space-time in curved coordinates from curved space-times. For this module we provide complementary video to help students to recall properties of tensors in flat space-time.
  • Einstein-Hilbert action and Einstein equations
    • We start with the explanation of how one can define Einstein equations from fundamental principles. Such as general covariance, least action principle and the proper choice of dynamical variables. Namely, the role of the latter in the General Theory of Relativity is played by the metric tensor of space-time. Then we derive the Einstein equations from the least action principle applied to the Einstein-Hilbert action. Also we define the energy-momentum tensor for matter and show that it obeys a conservation law. We describe the basic generic properties of the Einstein equations. We end up this module with some examples of energy-momentum tensors for different sorts of matter fields or bodies and particles.To help understanding this module we provide complementary video with the explanation of the least action principle in the simplest case of the scalar field in flat two-dimensional space-time.
  • Schwarzschild solution
    • With this module we start our study of the black hole type solutions. We explain how to solve the Einstein equations in the simplest settings. We find perhaps the most famous solution of these equations, which is referred to as the Schwarzschild black hole. We formulate the Birkhoff theorem. We end this module with the description of some properties of this Schwarzschild solution. We provide different types of coordinate systems for such a curved space-time.
  • Penrose-Carter diagrams
    • We start with the definition of the Penrose-Carter diagram for flat space-time. On this example we explain the uses of such diagrams. Then we continue with the definition of the Kruskal-Szekeres coordinates which cover the entire black hole space-time. With the use of these coordinates we define Penrose-Carter diagram for the Schwarzschild black hole. This diagram allows us to qualitatively understand the fundamental properties of the black hole.
  • Classical tests of General Theory of Relativity
    • We start with the definition of Killing vectors and integrals of motion, which allow one to provide conserving quantities for a particle motion in Schwarzschild space-time. We derive the explicit geodesic equation for this space-time. This equation provides a quantitative explanation of some basic properties of black holes. We use the geodesic equation to explain the precession of the Mercury perihelion and of the light deviation in curved space-time.
  • Interior solution and Kerr's solution
    • We start with the definition of the so called perfect fluid energy-momentum tensor and with the description of its properties. We use this tensor to derive the so called interior solution of the Einstein equations, which provides a simple model of a star in the General Theory of Relativity. Then we continue with a brief description of the Kerr solution, which corresponds to the rotating black hole. We end up this module with a brief description of the Cosmic Censorship hypothesis and of the black hole No Hair Theorem.
  • Collapse into black hole
    • We start with the derivation of the Oppenheimer-Snyder solution of the Einstein equations, which describes the collapse of a star into black hole. We derive the Penrose-Carter diagram for this solution. We end up this module with a brief description of the origin of the Hawking radiation and of the basic properties of the black hole formation.
  • Gravitational waves
    • With this module we start our study of gravitational waves. We explain the important difference between energy-momentum conservation laws in the absence and in the presence of the dynamical gravity. We define the gravitational energy-momentum pseudo-tensor. Then we continue with the linearized approximation to the Einstein equations which allows us to clarify the meaning of the pseudo-tensor. We end up this module with the derivation of the free monochromatic gravitational waves and of their energy-momentum pseudo-tensor. These waves are solutions of the Einstein equations in the linearized approximation.
  • Gravitational radiation
    • In this module we show how moving massive bodies create gravitational waves in the linearized approximation. Then we continue with the derivation of the exact shock gravitational wave solutions of the Einstein equations. We describe their properties.
      To help to understand this module we provide two complementary videos. One with the explanations how to perform the averaging over directions in space. And the other video is with the derivation of the retarded Green function.
  • Friedman-Robertson-Walker cosmology
    • With this module we start our discussion of the cosmological solutions. We define constant curvature three-dimensional homogeneous spaces. Then we derive Friedman-Robertson-Walker cosmological solutions of the Einstein equations. We describe their properties. We end up this module with the derivation of the vacuum homogeneous but anisotropic cosmological Kasner solution.
  • Cosmological solutions with non-zero cosmological constant
    • In this module we derive constant curvature de Sitter and anti de Sitter solutions of the Einstein equations with non-zero cosmological constant. We describe the geometric and causal properties of such space-times and provide their Penrose-Carter diagrams. We provide coordinate systems which cover various patches of these space-times.

Taught by

Emil Akhmedov

Reviews

4.0 rating, based on 1 Class Central review

Start your review of Introduction into General Theory of Relativity

  • This course is a great one if you have strong - and I mean really, really strong - background in college mathematics and physics, especially in classical electrodynamics and special theory of relativity, and you're confident with calculus, tensor calculus etc. The quizzes are comprised of peer-reviewed proofs, and there's a disclaimer in the first video that this course is going to be in a Russian style of teaching, so that's pretty much blood, sweat, and tears. :) Learned a lot.

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.