subject

edX: Animation and CGI Motion

 with  Professor Eitan Grinspun

How do you create realistic animations? How do you predict the motion of materials? It’s key to the success of animated films to ensure (was insure) audiences believe in characters.

This course will show you how to create lifelike animations focusing on the technical aspects of CGI animation and also give you a glimpse into how studios approach the art of physically-based animation.

You will learn the fundamental concepts of physical simulation, including:

  1. integration of ordinary differential equations such as those needed to predict the motion of a dress in the wind.
  2. formulation of models for physical phenomena such as crumpling sheet metal and flowing water.
  3. treatment of discontinuities such as fractures and collisions.
  4. simulation of liquids and solids in both Lagrangian and Eulerian coordinates.
  5. artistic control of physically-based animations.

These concepts will be put into practice in the programming assignments spanning:

  • Discretizing and integrating Newton’s equations of motion
  • Constrained Lagrangian Mechanics
  • Collisions, contact, and friction: detection and response
  • Continuum mechanics
  • Finite elements
  • Rigid body simulation
  • Thin shell and cloth simulation
  • Elastic rod and hair simulation
  • Fluid simulation

Syllabus

The coursework will focus on seven themes. Each theme is divided into weekly assignments, or "milestones." Each milestone will include successful implementation of new technical features, and an artistic scene that demonstrates these features.

Theme 01: Mass-spring systems, in which you will implement point masses, gravity, springs, dampers, time integrators (explicit Euler, symplectic Euler, linearized implicit Euler).

Theme 02: Collision handling, in which you will implement detection against fixed obstacles (discs, half-planes, polygonal objects), response against fixed obstacles (using reflection with a coefficient of restitution, and penalty methods), advanced pairwise detection between polygonal objects, and broad-phase accelerations using spatial hashing and hierarchical bounding volumes.

Theme 03: Rigid bodies, in which you will implement computations of center of mass and moment of intertia for polygonal objects, time integration for rigid bodies, and contact with fixed obstacles.

Theme 04: Elastica, in which you will implement the constant strain finite element, a discrete bending force for polygonal objects, and plastic and viscous flow.

Theme 05: Fluids, in which you will implement a fast and stable fluid simulation including advection, convection, and viscosity, in an Eulerian framework.

Theme 07: Project, in which you are the boss.

0 Student
reviews
Cost Free Online Course
Pace Upcoming
Institution Columbia University
Provider edX
Language English
Hours 8-10 hours a week
Calendar 53 weeks long
+ Add to My Courses
Learn Data Analysis udacity.com

Learn to become a Data Analyst. Job offer guaranteed or get a full refund.

Advertisement
Become a Data Scientist datacamp.com

Learn Python & R at your own pace. Start now for free!

Advertisement
FAQ View All
What are MOOCs?
MOOCs stand for Massive Open Online Courses. These are free online courses from universities around the world (eg. Stanford Harvard MIT) offered to anyone with an internet connection.
How do I register?
To register for a course, click on "Go to Class" button on the course page. This will take you to the providers website where you can register for the course.
How do these MOOCs or free online courses work?
MOOCs are designed for an online audience, teaching primarily through short (5-20 min.) pre recorded video lectures, that you watch on weekly schedule when convenient for you.  They also have student discussion forums, homework/assignments, and online quizzes or exams.

0 reviews for edX's Animation and CGI Motion

Write a review