subject

Coursera: Big Data Applications: Machine Learning at Scale

 with  Vladimir Lesnichenko, Pavel Mezentsev , Emeli Dral , Alexey A. Dral and Ilya Trofimov
Machine learning is transforming the world around us. To become successful, you’d better know what kinds of problems can be solved with machine learning, and how they can be solved. Don’t know where to start? The answer is one button away.

During this course you will:
- Identify practical problems which can be solved with machine learning
- Build, tune and apply linear models with Spark MLLib
- Understand methods of text processing
- Fit decision trees and boost them with ensemble learning
- Construct your own recommender system.

As a practical assignment, you will
- build and apply linear models for classification and regression tasks;
- learn how to work with texts;
- automatically construct decision trees and improve their performance with ensemble learning;
- finally, you will build your own recommender system!

With these skills, you will be able to tackle many practical machine learning tasks.

We provide the tools, you choose the place of application to make this world of machines more intelligent.

Special thanks to:
- Prof. Mikhail Roytberg, APT dept., MIPT, who was the initial reviewer of the project, the supervisor and mentor of half of the BigData team. He was the one, who helped to get this show on the road.
- Oleg Sukhoroslov (PhD, Senior Researcher at IITP RAS), who has been teaching MapReduce, Hadoop and friends since 2008. Now he is leading the infrastructure team.
- Oleg Ivchenko (PhD student APT dept., MIPT), Pavel Akhtyamov (MSc. student at APT dept., MIPT) and Vladimir Kuznetsov (Assistant at P.G. Demidov Yaroslavl State University), superbrains who have developed and now maintain the infrastructure used for practical assignments in this course.
- Asya Roitberg, Eugene Baulin, Marina Sudarikova. These people never sleep to babysit this course day and night, to make your learning experience productive, smooth and exciting.

Syllabus

Welcome


(Optional) Machine Learning: Introduction


Spark MLLib and Linear Models


Machine Learning with Texts & Feature Engineering


Decision Trees & Ensemble Learning


Recommender Systems


Recommender Systems (practice week)


0 Student
reviews
Cost Free Online Course (Audit)
Pace Upcoming
Institution Yandex
Provider Coursera
Language English
Certificates Paid Certificate Available
Calendar 5 weeks long
Sign up for free? Learn how

Disclosure: To support our site, Class Central may be compensated by some course providers.

+ Add to My Courses
FAQ View All
What are MOOCs?
MOOCs stand for Massive Open Online Courses. These are free online courses from universities around the world (eg. Stanford Harvard MIT) offered to anyone with an internet connection.
How do I register?
To register for a course, click on "Go to Class" button on the course page. This will take you to the providers website where you can register for the course.
How do these MOOCs or free online courses work?
MOOCs are designed for an online audience, teaching primarily through short (5-20 min.) pre recorded video lectures, that you watch on weekly schedule when convenient for you.  They also have student discussion forums, homework/assignments, and online quizzes or exams.

0 reviews for Coursera's Big Data Applications: Machine Learning at Scale

Write a review

Class Central

Get personalized course recommendations, track subjects and courses with reminders, and more.

Sign up for free