To support our site, Class Central may be compensated by some course providers.

Sports and Building Aerodynamics

Eindhoven University of Technology via Coursera

students interested

Taken this course? Share your experience with other students. Write review

Overview

Sign up to Coursera courses for free Learn how

Can the present outstanding records in cycling team time trials be further improved? Can the present world and Olympic records in athletics disciplines such as the 100 m sprint be advanced? This course provides the answer to these questions. It shows that aerodynamic processes in sports and around buildings are very complex and that many misconceptions exist. These misconceptions are caused by the often counter-intuitive flow physics. Interestingly, the same counter-intuitive flow physics govern the misconceptions in both sports and building aerodynamics. The insights from this course will help you to understand and improve the performance of top athletes and of modern building design.

In 2013, team Orica-Green Edge set the fastest-ever average speed for a Tour de France team time trial, with 57.8 km/h over a distance of 25 km, beating team Omega-Pharma Quick-Step by a mere 0.75 s. At the subsequent 2013 UCI Road World Championships, the latter team beat the former by only 0.88 s. Clearly, even minor aerodynamic improvements can be decisive in these prestigious races. And, surprisingly, up to now, the optimum aerodynamic setting for a team time trial has not yet been explored.

Records in athletics races such as the 100 m sprint, the 110 m hurdles and the long jump are only validated by the IAAF (International Association of Athletics Federations) when the tail wind does not exceed 2 m/s. Most world and Olympic records have been established at tail winds close to 2 m/s. Clearly, local aerodynamic effects can be decisive in establishing new records. Also here, the optimum aerodynamic setting has not yet been explored.

New and prestigious building projects are realized in different parts of the world. Some of them feature the integration of wind energy systems in the building design. Also here, aerodynamic misconceptions can lead to suboptimal performance.

The course starts with a brief recapitulation of the basic aspects of fluid flow: statics, kinematics, dynamics, flow regimes and boundary layers, including the atmospheric boundary layer in which sports and building aerodynamics take place. Next, the main aspects of the aerodynamic analysis techniques of wind tunnel testing and Computational Fluid Dynamics (CFD) simulations are outlined. Tips and tricks for wind tunnel testing and CFD simulations are given. This knowledge provides the basis for the course parts on building aerodynamics, 100 m sprint aerodynamics and cycling aerodynamics, where some surprising and sometimes spectacular results will be shown.

Syllabus

This is a six-week course with the following contents:

Week 1: Basic aspects of fluid flow

  1. Fluid properties - part 1 (velocity, pressure, temperature)
  2. Fluid properties - part 2 (density)
  3. Fluid properties - part 3 (viscosity)
  4. Flow properties - part 1
  5. Flow properties - part 2
  6. Fluid statics, kinematics, dynamics
  7. Boundary layers - part 1
  8. Boundary layers - part 2
  9. Boundary layers - part 3
  10. The atmospheric boundary layer

Week 2:  Wind-tunnel testing

  1. Why wind-tunnel testing?
  2. Wind-tunnel types and applications
  3. The atmospheric boundary layer wind tunnel
  4. Wind-tunnel components
  5. Measurements and flow visualization
  6. Similarity and flow quality
  7. Best practice guidelines

Week 3: Computational Fluid Dynamics

  1. Computational Fluid Dynamics: what, why and how?
  2. Approximate forms of the Navier-Stokes equations
  3. Turbulence modeling
  4. Some aspects of discretization
  5. Near-wall modeling
  6. Errors and uncertainty, verification and validation
  7. Best practice guidelines
  8. Computational Wind Engineering – Part 1
  9. Computational Wind Engineering – Part 2

Week 4:  Building aerodynamics

  1. Wind flow around buildings – part 1
  2. Wind flow around buildings – part 2
  3. Pedestrian-level wind conditions around buildings – part 1
  4. Pedestrian-level wind conditions around buildings – part 2
  5. Pedestrian-level wind conditions around buildings – part 3
  6. Natural ventilation of buildings
  7. Wind-driven rain on building facades – part 1
  8. Wind-driven rain on building facades – part 2
  9. Wind energy in the built environment – part 1
  10. Wind energy in the built environment – part 2

Week 5: 100 m sprint aerodynamics

  1. Why study sprint aerodynamics?
  2. Mathematical-physical model of running
  3. Wind effects
  4. Altitude effects
  5. Stadium aerodynamics and sprint records
  6. Interview with a professional athletics coach

Week 6:  Cycling aerodynamics

  1. Why study cycling aerodynamics?
  2. Wind-tunnel testing for a single cyclist – Part 1
  3. Wind-tunnel testing for a single cyclist – Part 2
  4. CFD simulations for a single cyclist
  5. Aerodynamics of two drafting cyclists
  6. Aerodynamics of drafting cyclist groups
  7. Aerodynamics of car-cyclist combinations
  8. Interview  with professional cycling coaches from teams Belkin and RaboLiv

Taught by

Bert Blocken

Help Center

Most commonly asked questions about Coursera Coursera

Review for Coursera's Sports and Building Aerodynamics
3.0 Based on 1 reviews

  • 5 star 0%
  • 4 star 0%
  • 3 star 100%
  • 2 star 0%
  • 1 star 0%

Did you take this course? Share your experience with other students.

Write a review
  • 1
Vivek K
3.0 4 years ago
Vivek completed this course, spending 2 hours a week on it and found the course difficulty to be medium.
2 people found
this review helpful
Was this review helpful to you? Yes
  • 1

Class Central

Get personalized course recommendations, track subjects and courses with reminders, and more.

Sign up for free

Never stop learning Never Stop Learning!

Get personalized course recommendations, track subjects and courses with reminders, and more.