Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

YouTube

Fluid Dynamics

via YouTube

Overview

This course on Fluid Dynamics aims to teach students the fundamentals of fluid mechanics and transport phenomena. By the end of the course, learners will be able to derive and apply the Bernoulli equation, understand continuity equations, solve for equations of motion, analyze laminar flow, calculate pressure drops in pipes, and explore boundary layers. The course utilizes screencasts, interactive simulations, and examples to help students grasp the concepts effectively. This course is intended for individuals interested in gaining a comprehensive understanding of fluid dynamics, including students of engineering, physics, and related fields.

Syllabus

Bernoulli Equation Derivation.
Simple Bernoulli Equation Example.
Air Flow Through a Constriction.
Draining a Conical Tank.
Draining a Cylindrical Tank.
Flow Rate Out of a Coffee Urn.
Flow Exiting a Tank (Bernoulli).
Draining a Spherical Tank.
Velocity of a Falling Sphere.
Pitot Static Tube Introduction & Example.
Pitot Tube Example.
Derivation of the Continuity Equation.
Deriving Continuity Equation in Cylindrical Coordinates.
Differential Form of Continuity Equation.
Continuity and Stream Functions.
Irrotational & Incompressible Flow.
Naming Normal and Tangential Stresses.
Coordinate Transformations, part 1 - Lecture 3.1 - Chemical Engineering Fluid Mechanics.
Coordinate Transformations, part 2 - Lecture 3.2 - Chemical Engineering Fluid Mechanics.
Coordinate Transformations, part 3 - Lecture 3.3 - Chemical Engineering Fluid Mechanics.
Solve for Equations of Motion.
Velocity Potentials and Stream Functions.
Applying the Navier-Stokes Equations, part 1 - Lecture 4.6 - Chemical Engineering Fluid Mechanics.
Applying the Navier-Stokes Equations, part 2 - Lecture 4.7 - Chemical Engineering Fluid Mechanics.
Applying the Navier-Stokes Equations, part 3 - Lecture 4.8 - Chemical Engineering Fluid Mechanics.
Applying the Navier-Stokes Equations, part 4 - Lecture 4.9 - Chemical Engineering Fluid Mechanics.
Boundary Conditions for a Velocity Profile.
Laminar Flow between Parallel Plates (Navier-Stokes).
Shear Stress between Parallel Plates.
Energy Loss for Flow through Non-Circular Duct.
Entrance Length Example.
Entrance Region vs. Fully Developed Flow.
Fully Developed Laminar Flow (Using Force Balance).
Losses & Friction Factors, part 1 - Lecture 6.1 - Chemical Engineering Fluid Mechanics.
Losses & Friction Factors, part 2 - Lecture 6.2 - Chemical Engineering Fluid Mechanics.
Losses & Friction Factors, part 3 - Lecture 6.3 - Chemical Engineering Fluid Mechanics.
Losses & Friction Factors, part 4 - Lecture 6.4 - Chemical Engineering Fluid Mechanics.
Pipe Flow Introduction.
Pipe Flow Problem (Determine Diameter).
Pipe Flow Computer Solver (Determine Diameter).
Pipe Flow: Determining Power.
Pipe Flow: Entrance Region & Entrance Length.
Pressure Drop in a Pipe (Laminar Flow).
Pressure Drop in Pipe with Losses (Determine Pressure Drop).
Pressure Drop in Pipe with Losses (Determine Q).
Using a Moody Chart.
Volumetric Flow Rate for Laminar Pipe Flow.
Blasius Solution for the y-Component of Velocity.
Boundary Layer Example Problem.
Boundary Layers.
Drag Force on an Irregular Object.
Lift and Drag on Aircraft.
Pressure Drag.
Shear Stress at a Wall: Blasius Solutions.
y-Component of Velocity at a Boundary Layer.
Description and Derivation of the Navier-Stokes Equations.
Integral Form of the Continuity Equation - Moving Control Volume.
Introduction to the Integral Form of the Continuity Equation.
Integral Form of the Continuity Equation - Branched System.
Blasius Solution for Boundary Layer Flow.
Example of Blasius Solution for Boundary Layer Flow.
Using Boundary Conditions.
Couette Flow.
Density Example Problem.
Properties of Fluids Part 1.
Properties of Fluids Part 2.
Flow in a Pipe.
Barometer Example.
Velocity Profile in the z-direction.
Equivalent Length.
Equivalent Length Example.
Multipipe Systems.
Multipipes in Series.
Bernoulli Equation and Pipe Flow (Interactive Simulation).
Multipipe in Parallel.
Surface Roughness Effect on Trajectory (Interactive Simulation).
Velocity and Drag on a Falling Object (Interactive Simulation).
Vectors (Interactive Simulation).
Calculating Velocity in a Pipe with Viscous Flow.
Calculating Pipe Velocity Example.
Buoyancy of a Floating Cube (Interactive Simulation).
Flow around a Sphere at Low Reynolds Number (Interactive Simulation).
Couette Flow (Interactive Simulation).
Manometers (Interactive Simulation).

Taught by

LearnChemE

Reviews

Start your review of Fluid Dynamics

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.