subject
Intro

edX: Materials Science and Engineering

This engineering course presents a broad multidisciplinary approach to understanding and manipulating the mechanical, electrical, optical and magnetic properties of materials.

Materials have always been the keystone of society, and they are playing an increasingly paramount role in our high-tech age. Correspondingly, materials scientists and engineers are highly valued and well-paid specialists.

The course content is closely related to chemical, mechanical, electrical, computing, and bio- and civil engineering. This course will provide key information about fundamental characteristics of a variety of materials including metals, ceramics, polymers, and electronic materials.  

Taught by professor Alexander Mukasian, who has decades of experience in various materials science and engineering areas, this course will provide the essential basis for an engineering education.

This course considers:

  • How the physical properties of metals, ceramics polymers and composites are correlated with their internal structures (on atomic, molecular, crystalline, micro- and macro- scales) and operational conditions (mechanical, thermal, chemical, electrical and magnetic)
  • How materials processing, e.g. mechanical working and heat treatment, affects their properties and performance.
  • The latest achievements in Materials Science and Engineering

Basic knowledge in chemistry and physics is required.  

Syllabus

Week 1: Classification and Properties of the Materials
Introduction to basic materials science concepts, such as classes of materials and their primary properties. Also has some general information about the Materials Science and its role in the society.

Week 2: Atomic Scale of the Materials: Atomic Bonding, Bond Energy, Bond Stiffness
Explanation of elastic and thermodynamic properties of the materials on the basis of the electron structure of atoms and the specific types of atomic interactions within the material.

Week 3: Atomic Structure and Mechanical Properties of Materials
Discussion about the major dependence between the mechanical properties of the materials and their atomic structure.

Week 4: Crystal Lattice Scale of the Materials: Crystal Structures and Their Properties
General information about the classification of crystals and dependence between mechanical properties and crystal structure of materials.   
 
Week 5: Nano and Micro- Scales: Polymorphic Transformations; Defects in Solids; Grains and Grain Boundaries
From the dislocations to the tin plague: everything that you wanted to know about the microstructure of materials, but were afraid to ask.
 
Week 6: How to Shape the Microstructure and the Mechanical Properties of the Materials
Introduction to complex techniques, which allows the engineers to alter the properties of materials by modification of materials’ microstructure. 
 
Week 7: X-ray Diffraction Analysis of the Materials
Basic information about the diffraction and interference of different types of rays and how to use them to investigate the crystal structure of the materials.
 
Week 8: Transmission Electron Microscopy
General information about one of the most powerful tools of modern microscopy, a tool which allows the scientist to directly observe the atoms in materials.
 
Week 9: Advanced Scanning Electron Microscopy
Overview of the scanning electron microscopy - from the most widely used materials investigation techniques to state-of-art integrated nano-laboratories.
 
Week 10: Conclusions
A brief summary of the course, which re-iterates the basic materials science and engineering concepts in the light of discussed concepts.
0 Student
reviews
Cost Free Online Course
Provider edX
Language English
Certificates $49 Certificate Available
Hours 2-3 hours a week
Calendar 10 weeks long
+ Add to My Courses
Learn Data Analysis udacity.com

Learn to become a Data Analyst. Job offer guaranteed or get a full refund.

Advertisement
Best Machine Learning Courses class-central.com

Every single Machine Learning course on the internet, ranked by your reviews

Advertisement
FAQ View All
What are MOOCs?
MOOCs stand for Massive Open Online Courses. These are free online courses from universities around the world (eg. Stanford Harvard MIT) offered to anyone with an internet connection.
How do I register?
To register for a course, click on "Go to Class" button on the course page. This will take you to the providers website where you can register for the course.
How do these MOOCs or free online courses work?
MOOCs are designed for an online audience, teaching primarily through short (5-20 min.) pre recorded video lectures, that you watch on weekly schedule when convenient for you.  They also have student discussion forums, homework/assignments, and online quizzes or exams.

0 reviews for edX's Materials Science and Engineering

Write a review

Write a review

How would you rate this course? *
How much of the course did you finish? *
Review
Create Review