subject
Intro

edX: Simulation Neuroscience

 with  Henry Markram , Idan Segev , Sean Hill , Dr. Felix Schürmann , Dr. Eilif Muller , Dr. Srikanth Ramaswamy , Werner Van Geit , Samuel Kerrien and Lida Kanari

Simulation Neuroscience is an emerging approach to integrate the knowledge dispersed throughout the field of neuroscience. 

The aim is to build a unified empirical picture of the brain, to study the biological mechanisms of brain function, behaviour and disease. This is achieved by integrating diverse data sources across the various scales of experimental neuroscience,  from molecular to clinical, into computer simulations. 

This is a unique, massive open online course taught by a multi-disciplinary team of world-renowned scientists. In this first course, you will gain the knowledge and skills needed to create simulations of biological neurons and synapses.  

This course is part of a series of three courses, where you will learn to use state-of-the-art modeling tools of the HBP Brain Simulation Platform to simulate neurons, build neural networks, and perform your own simulation experiments. We invite you to join us and share in our passion to reconstruct, simulate and understand the brain!

Syllabus

Week 1: Simulation neuroscience: An introduction,
Understanding the brain
Approaches and Rationale of Simulation Neuroscience
The principles of simulation neuroscience
Data strategies
Neuroinformatics
Reconstruction and simulation strategies
Summary and Caveats

Experimental data
Single neuron data collection techniques 
Morphological profiles
Electrophysiological profiles
Caveats and summary of experimental data techniques

Single neuron data
Ion channels
Combining profiles
Cell densities
Summary and Caveats
Synapses
Synapses
Synaptic dynamics

Week 2: Neuroinformatics
Introduction to neuroinformatics
Text mining
Data integration and knowledge graphs
Knowledge graphs 
Ontologies 
Neuroinformatics
Brain atlases and knowledge space
Motivation of data-integration
Fixed data approach to data integration
Blue Brain Nexus
Architecture of Blue Brain Nexus
Design a provenance entity
Ontologies
Creating your own domain
MINDS
Conclusion
Acquisition of neuron electrophysiology and morphology data
Generating data
Using data
Design an entity
An entity design and the provenance model
Conclusion
Morphological feature extraction
Morphological structures,
Understanding neuronal morphologies using NeuroM
Statistics and visualisation of morphometric data

Week 3: Modeling neurons
Introduction to the single neuron
Introduction 
Motivation for studying the electrical brain  
The neuron
A structural introduction 
An electrical device 
Electrical neuron model
Modeling the electrical activity  
Hodgkin & Huxley
Tutorial creating single cell electrical models
Single cell electrical model: passive
Making it active
Adding a dendrite
Connecting cells

Week 4: Modeling synapses
Modeling synaptic potential
Modeling the potential
Rall’s cable model
Modeling synaptic transmission between neurons
Synaptic transmission
Modeling synaptic transmission
Modeling dynamic synapses tutorial
Defining your synaps
Compiling your modifies
Hosting & testing your synaps model
Reconfigure your synaps to biological ranges
Defining a modfile for a dynamic TM synapse
Compiling and testing the modfile

Week 5: Constraining neurons models with experimental data
Constraining neuron models with experimental data
Constraining neuron model with experimental data.
Computational aspects of optimization
Tools for constraining neuron models
Tutorials for optimization
Setting up the components

Week 6: Exam week
NMC portal
Accessing the NMC portal
Running models on your local computer
Downloading and interacting with the single cell models 
Injecting a current
0 Student
reviews
Cost Free Online Course
Pace Self Paced
Subject Biology
Provider edX
Language English
Certificates $49 Certificate Available
Hours 5-8 hours a week
Calendar 6 weeks long

Disclosure: To support our site, Class Central may be compensated by some course providers.

+ Add to My Courses
FAQ View All
What are MOOCs?
MOOCs stand for Massive Open Online Courses. These are free online courses from universities around the world (eg. Stanford Harvard MIT) offered to anyone with an internet connection.
How do I register?
To register for a course, click on "Go to Class" button on the course page. This will take you to the providers website where you can register for the course.
How do these MOOCs or free online courses work?
MOOCs are designed for an online audience, teaching primarily through short (5-20 min.) pre recorded video lectures, that you watch on weekly schedule when convenient for you.  They also have student discussion forums, homework/assignments, and online quizzes or exams.

0 reviews for edX's Simulation Neuroscience

Write a review

Class Central

Get personalized course recommendations, track subjects and courses with reminders, and more.

Sign up for free